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Abstract—Since the performance of communication protocols
in vehicular networks highly depends of the mobility pattern,
one of the most important issues in the simulation of this kind
of protocols, is how to properly model the mobility of vehicles.
In this paper we present VACaMobil, a VANET Car Mobility
Manager for the OMNeT++ simulator which allows researchers
to completely define vehicular mobility by setting the desired
average number of vehicles and its upper and lower bounds . We
compare VACaMobil against other common methods employed to
generate vehicular mobility. Results clearly show the advantages
of the VACaMobil tool when distributing vehicles in a real
road map scenario, becoming the best simulation framework to
evaluate the performance of different communication protocols
and algorithms in VANET environments.

Index Terms—Vehicular Networks, Mobility patterns, Simula-
tion Tool, SUMO, TraCI.

I. INTRODUCTION

The reproducibility of experiments is a major issue when
evaluating smart communication protocols and algorithms,
especially over Vehicular Ad-hoc NETworks (VANETs). In
[6] Sommer et al. provide a complete review of the minimum
set of parameters that should be identified in publications in
order to allow other researchers to reproduce simulation exper-
iments. They pointed out several key parameters, such as the
simulated hardware, the network simulator, the scenario, and
the road traffic simulator. However, regarding node mobility,
there is another parameter that has been mostly ignored by the
research community: the amount of traffic..

As other authors pointed out before, mobility models [10]
and the chosen scenario [4], as well as the node density,
heavily influence the final network performance. However,
since mobility generators and road traffic simulators are often
tough to configure, the simulated node density and distribution
may depend on complex data that is usually not included in the
published academic results, which compromises reproducibil-
ity.

In this paper we present VACaMobil (VANET Car Mobility
manager), a mobility manager module for the OMNeT++
simulator which is the first, to the best of our knowledge, able
to generate SUMO [1] driven nodes in a vehicular network
while ensuring that certain user-defined parameters, such as
the average, maximum, and minimum number of vehicles,
are correctly achieved. This goal is useful for mid-length
simulations, typically one hour, where vehicle density should

remain stable. At the same time, since our solution is tightly
coupled with SUMO through the TraCI interface, it is able
to mimic real vehicle behavior. By running in parallel with
SUMO, VACaMobil executes the following tasks: (i) manages
when a new vehicle must be introduced in the network,
(ii) assigns a random route from a predefined set to each
vehicle, and (iii) determines which type of vehicle should be
added. Given a specific road map, when using VACaMobil,
researchers will be able to completely define the network
mobility merely by defining the desired average number of
vehicles and its standard deviation value (upper and lower
bounds).

Going a step further, our tool also aids researchers at
selecting among the different types of vehicles defined in
SUMO. This allows researchers to easily define road traffic
simulations with heterogeneous vehicles, such as trucks, cars,
or buses.

The remaining sections of this paper are organized as fol-
lows: In section II, we shortly introduce the different methods
for generating VANET mobility patterns that the research
community has been employing. In section III, VACaMobil
is fully described. In section IV, we compare our proposal
with other methods available in SUMO. Finally, in section V,
we expose our conclusions and some future plans to improve
VACaMobil.

II. A REVIEW OF EXISTING MOBILITY GENERATORS FOR
VANETS

Before presenting the details of our proposal, we analyze
some of the methods commonly used to obtain suitable mo-
bility patterns in urban vehicular scenarios. We have analyzed
several papers published during the last few years, most
of them published in the Vehicular Networking Conference
(VNC) and the Vehicular Technology Conference (VTC).
Early approaches relied on too simple mobility models based
merely on random mobility. Since these simple models do
not represent vehicle mobility properly, other mobility models
have been recently developed based on real world traces and
artificial mobility models from the field of transportation and
traffic science. In this section, we briefly describe the most
relevant works.



2

A. Random Vehicle Movement

At the beginning of the previous decade, the “Random Way-
Point" was extensively used in Mobility Ad-Hoc NETwork
(MANET) research. However, in 2003, the authors in [15]
demonstrated how harmful the Random Way-Point mobility
model really is. Moreover, the effects described in this work
are even worse when simulating VANETs. Later on, some
other authors have extended the “Random Way-Point" mobility
model by restricting the mobility of nodes to a map layout, as
in [14]. However, this small and needed improvement does
not solve the majority of the “Random Way-Point” model
problems stated previously.

In our research group we developed a tool called “City-
Mob" [9]. CityMob allows users to create random mobility
patters restricted to a grid. It also adds support for downtown
definition, where a downtown is a region inside the simu-
lated map which concentrates the majority of the selected
routes along the simulation. Although CityMob presents a
big improvement compared to non restricted mobility models,
as well as random mobility models, it also presents some
problems; the most important one is that vehicular mobility is
not influenced by other vehicles, i.e. two different vehicles can
occupy the same location and no minimal distance between
vehicles is required. Moreover, vehicles do not change their
speed during a trip. Obviously, in the real world, vehicles
change their speed according to traffic conditions and road
characteristics. Last but not least, vehicles keep moving
throughout the whole simulation, which especially influences
the performance of protocols which keep data stored in buffers.
The research community quickly realized the problems derived
from inaccurate simulation patterns and started to work in
other methods to obtain suitable mobility traces.

B. Real World Mobility Traces

Compared to the use of random mobility, real traces present
a clear improvement. Such traces are usually obtained from a
certain set of nodes, e.g. from taxis in the city of Shangai [7].
Mobility traces can be obtained by tracking the mobility of
nodes using On-Board units, as in [7], or by using road-side
equipment, as in [5]. Although real traces represent the most
realistic mobility patterns, we can not obviate the fact that
the mobility of the tracked nodes is highly influenced by the
movement of other non tracked vehicles, e.g. taxis’ mobility is
influenced by other users on the road whose movement is not
reflected in the collected traces. Moreover, real world traces
lack the flexibility to allow for an exhaustive evaluation of
VANET protocols, e.g. changing the vehicle density without
modifying their speed is clearly unreal.

C. Assisted Traffic Simulation

The restrictions of real traces can be overcome, with almost
no loss of realism, by using mobility models taken from
the field of transportation and traffic science. Several road
traffic simulators are widely used among the VANET research
community. One of the most widely used mobility generators
is SUMO [1]. When simulating traffic mobility for VANETs
not only the vehicles’ behavior is important, but also the
traffic demand. SUMO allows defining traffic demand in two

different ways, trips and flows, the former defines only a
vehicle, its origin and its destination, while the latter defines a
set of vehicles which execute the same trip. SUMO currently
provides several tools to generate traffic demand:

• randomTrips.py: A random trip generator. This tool gen-
erates a trip every second having a random origin and
destination. It does not check if the origin and destination
are connected, or whether the trip is possible.

• duarouter: A Dijkstra router. Given a file with trips
and flows, this tool generates the actual traffic demand,
expressed in vehicles with an assigned route. Routes
are calculated using the Dijkstra algorithm, and every
unconnected trip is discarded.

• duaIterate.py: This python script will produce a set of
optimal routes from a trip file, i.e. all the nodes will
follow that route which minimizes the total trip-time for
all nodes. This tool repeats a routing-simulation loop until
optimal routes are found.

Authors have used these tools in different ways in order to
generate traffic demands for SUMO. The most simplistic one
is to define different flows inside the network. Although drivers
usually move from certain districts to others, following pat-
terns associated with their working and living places, defining
the traffic only by creating fixed flows lacks of any realism,
as we can see in [2] where only a few flows are defined by
the user. Other common approach is to generate random trips
using randomTrips.py. This approach presents the problem that
only one vehicle is introduced in each second, which leads
to long transitory periods until the network reaches a stable
state. A more sophisticated traffic demand generation strategy
is presented in [8], where a predefined number of vehicles
following random routes are randomly placed at the beginning
of the simulation. Following this trend, in previous works we
used C4R [3], which is a software developed by our group to
automate the task of generating random vehicles with random
routes at random places. The work presented in [13] is the
only one that we could find which uses the duaIterate.py script
to generate a “stable and optimal distribution of flows". This
type of traffic definition presents a problem: the trip duration
of can not be predicted before running the simulations, and, as
a consequence, there is no way to ensure, or even determine, if
the road traffic simulation will last until the end of the network
simulation. As some works have stated before, this lack of
realism and generality in mobility patters can lead to biased
results [10].

D. Bidirectionally coupled network and traffic simulations

In [11] its authors go a step further and present a new
simulation framework called Veins which includes an interface
called TraCi that allows the network simulator to interact
with the traffic simulator which runs in parallel. Although,
it presents much novelty and opens a lot of possibilities for
VANET simulation, authors do not address the traffic demand
generation problem. This framework demonstrated its new
characteristics in [12], and is one of the main elements of our
VACaMobil module by allowing us to interact with SUMO
during the network simulation and create new vehicles.
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Figure 1. Main loop of the VACaMobil tool.

III. VACAMOBIL MOBILITY MANAGER

In this section we present our VANET mobility generator
providing the objectives followed and its implementation de-
tails.

A. Objectives

The main objective of this tool is to guarantee a con-
stant number of vehicles throughout the whole simulation
time, avoiding long transitory periods. In order to provide
more flexibility and realism, VACaMobil allows researchers
to define upper and lower bounds for the number of vehicles
while maintaining the desired averaged value. The direct
consequence of achieving these objectives is the creation of
a tool that ensures repeatability of network simulations under
the same road traffic conditions just by defining the average
number of vehicles and the standard deviation values.

Another objective was the possibility of having different
types of vehicles, each with a predefined probability. There-
fore, we can introduce different vehicle types in simulations,
such as “car”, “bus” and “truck”, each one with its own
characteristics in the simulated scenario. This is an important
feature because high level decisions may be based on the
vehicle type.

A third objective was to achieve a realistic vehicle distribu-
tion by employing different predefined routes.

An additional objective was that the module itself should
work on-line with the SUMO mobility generator, obtaining all
the needed information about routes and vehicle types through
the TraCI communication interface to avoid the duplicity of
configuration files.

B. Implementation details

This tool extends the module collection available in the
Veins framework [11] with new capabilities unavailable until
now. We explain, for each of the objectives described before,
the different implementation decisions taken.

1) Mean number of vehicles with a certain variability:
Taking into account that we cannot delete vehicles, we can
only add a new vehicle to increase their number and wait for
vehicle arrivals to destination to decrease it.

Figure 1 shows the VACaMobil control loop. At every step
of the mobility simulation, VACaMobil compares the actual
number of vehicles in the road map with the number of
vehicles which is defined as the target value. Depending on the
result of this comparison, the module waits until the number of
vehicles decreases, or starts inserting new vehicles to achieve

the desired value. To avoid having a mean number of vehicles
higher than the one defined by the user, the time during which
new vehicles are inserted is as long as the last period where the
number of vehicles has decreased. By doing this we also avoid
a jagging effect in the total number of vehicles throughout
time.

To obtain the new objective in terms of number of vehicles
while maintaining a good degree of variability, we applied a
normal function whose mean value is the number of desired
vehicles, and whose standard deviation is the one defined by
the user. The upper and lower bounds are defined as the
mean ± 3 ∗ standard deviation to avoid extremely high
or extremely low vehicle values. Taking that into account, a
0.27% of the values will be outside this function, and thus,
the objective value is bounded to the maximum and minimum
number of vehicles.

2) Different vehicle types: One of the parameters we can
obtain via TraCI is the vehicle types that the network allows.
The user can set the different probabilities associated to each
vehicle type. In this case, every time that a new car is waiting
to be inserted, we obtain a uniform random value and select
the correspondent vehicle type. If no probability is defined
for a certain vehicle type, we assume it is 0. However if no
probability is defined for any vehicle type, only one type will
be inserted.

3) Routing set and vehicle distribution: Since SUMO itself
loads all the different routes at startup, we can also retrieve
them through TraCI, and, as in the previous item, we select
one of them with an uniform probability every time we add a
new vehicle.

Since VACaMobil does not compute the routes at simulation
time, it relies on the goodness of the different routes made
available by SUMO. To guarantee that the whole map is
employed, we also developed a tool based on duaIterate.py
which creates a SUMO route file with several disjoint routes.

Finally, to ensure that a new vehicle is correctly added, the
default behavior is to attempt to insert the vehicle at any of
the lanes available on the first edge of the first edge of the
route. If the edge is full, the module selects a new route in
an iterative way, repeating the operation until it finds a free
place to insert the vehicle, or until the first selected route is
selected again, which means that there is no room at the road
map for the new vehicle.

IV. EVALUATION

In this section we evaluate VACaMobil to verify whether
the objectives described in section III-A have been accom-
plished. In order to do that, we have compared VACaMobil
against the tools currently included in SUMO, duarouter and
duaIterate.py, that were described in section II in the following
scenarios:

• Synthetic Manhattan scenario: We created a road map
consisting of a 25 x 25 grid with segments of 200 meters.

• Urban real map scenario: We extracted an urban road
layout from the OpenStreetMap database. It is a scenario
of about 7 km2 from the city of Milano characterized by
short road segments and a high road density.
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Figure 2. Heat map for the Manhattan scenario when using duarouter, duaIterate.py, and VACaMobil (from left to right).

Figure 3. Heat map for the urban scenario when using duarouter, duaIterate.py, and VACaMobil (from left to right).

In both scenarios, the VACaMobil random routes set is ex-
tracted from the traffic demand generated by duaIterate.py. In
the following subsection, we evaluate the vehicle density and
its evolution for the aforementioned tools and scenarios.

A. Vehicle distribution study

Here we evaluate one of the most important issues in ve-
hicular mobility: how vehicles are distributed on the simulated
road map.

Figure 2 shows how the compared methods perform in the
Manhattan scenario. Due to its lack of randomness, duarouter
is unable to select different routes for vehicles when there
are several streets with the same travel-time. This prevents
the simulator to distribute vehicles properly, and so all them
are routed through the same street (eleventh from the left).
When using the duaIterate.py script, a better distribution of
the vehicles is achieved due to the many simulations sequen-
tially executed to optimize vehicle routes. Since VACaMobil’s
random routes set is obtained from duaIterate.py, it achieves
a similar nodes distribution..

Figure 3 shows performance results for the urban scenario.
In this case, duarouter is also unable to spread the vehicles
properly. Since some roads are faster than others, all the
vehicles are routed through them, even when these streets are
congested. Therefore, an undesired traffic congestion is created
in the fastest inner roads. However, this is an unrealistic
scenario because drivers tend to avoid traffic jams whenever
possible. When either using duaIterate.py or VACaMobil,
vehicles are routed through alternative streets, avoiding traffic
jams. This strategy has a higher degree of similitude compared
to real road traffic, since drivers prefer faster roads but often
change their route to avoid traffic jams.

Table I
VACAMOBIL CONFIGURATION

Vehicle number Std. dev.
Manhattan 320 6

Urban scenario 370 8

Table II
VEHICLE STATISTICS SUMMARY

Manhattan Urban scenario
mean std. dev. mean std. dev.

duarouter 313.767 58.8271 880.546 465.716
duaIterate.py 304.487 55.5174 393.717 96.414
VACaMobil 319.349 6.14267 369.691 7.84640

B. Vehicle density study

To make simulations more easily comparable, a similar
traffic density is desirable in all simulated city layouts. Current
tools can not correctly handle this problem. In order to
compare the behavior of the three selected methods previously
exposed, we have measured the mean density, its standard
deviation, and its evolution along time.

Table II shows the differences in terms of number of vehi-
cles for the three target scenarios for each traffic generation
tool. In simplest scenarios (Manhattan and suburban), the three
methods can achieve a stable value for the mean vehicle den-
sity with a low standard deviation. However, neither duarouter
nor duaIterate allow to a priori configure the value of this
parameter. On the contrary, VACaMobil not only is able to
populate the network with the desired number of vehicles,
but also allows defining a maximum and a minimum number
of vehicles using the standard deviation feature, which will
bound the number of vehicles. In complex maps like the
urban scenario, VACaMobil is the only tool able to maintain
a moderate standard deviation value.

To better understand the aforementioned values, figures 4,
and 5 show the number of vehicles in the scenario along
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Figure 4. Vehicle number evolution for the Manhattan scenario
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Figure 5. Vehicle number evolution for the urban scenario

time for each tool. Since duarouter and duaIterate.py are only
able to add one vehicle per second, the user cannot predict
when vehicles will arrive to their destination and disappear
from the network. Therefore, the number of vehicles when
the simulation reaches a steady-state in the Manhattan scenario
is not known a priori, that converts protocols analysis based
on number of vehicles in a mere act of faith. Moreover, in
urban maps where traffic jams are very common, as in the
urban scenario, it takes more time for vehicles to reach their
destination and leave the network, which leads to a constant
increasing number of vehicles in the network when not using
VACaMobil. Comparing the configuration in table I and the
results in table II, we can conclude that both the target number
of vehicles and the standard deviation goal are clearly achieved
with VACaMobil.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented VACaMobil1, a new tool for the
OMNeT++ simulator which promotes the full repeatability of
VANET simulations. By adding some new, critical features to
the previous existing tools, such as ensuring a constant number
of vehicles during the entire simulation period, disseminating
vehicles throughout the whole route-map, and the possibility
of defining different vehicle types with different probabilities,
all the proposed objectives are accomplished.

Contrarily to other existing tools, which are not able to
control the mean number of vehicles nor its standard deviation,
VACaMobil is able to maintain the mean number of vehi-
cles and the standard deviation value within the user-defined
bounds. To the best of our knowledge, this is currently the only

1VACaMobil is freely available at www.grc.upv.es/software.

tool that allows to studying a vehicular network in a steady
situation, a goal which typically takes hours, with a chosen
vehicle density and variability, and without losing the realistic
vehicle behavior provided by SUMO.

As future work we pretend to improve our application with
some of the good and practical features which were presented
in other applications, such as defining downtowns and the
automatic placement of Road Side Units (RSU).
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